Dictionary of Scientific Biography


Dictionary of Scientific Biography




Linda Hall Library Collection Table of Contents



AGRICOLA, GEORGIUS, also known as Georg Bauerb. Glauchau, Germany, 24 March 1494; d. Chemnitz, Germany [now Karl-Marx-Stadt, German Democratic Republic], 21 November 1555), mining, metallurgy.
  BIBLIOGRAPHY

BALDI, BERNARDINO(b. Urbino, Italy, 5 June 1553; d. Urbino, 10 October 1617), mechanics.
  BIBLIOGRAPHY

BORELLI, GIOVANNI ALFONSO(b. Naples, Italy, January 1608; d. Rome, Italy, 31 December 1679), astronomy, epidemiology, mathematics, physiology (iatromechanics), physics, volcanology.
  BIBLIOGRAPHY

BRUNO, GIORDANO (b. Nola, Italy, 1548; d. Rome, Italy, 17 February 1600), philosophy.
  BIBLIOGRAPHY

BUCKLAND, WILLIAM (b. Axminster, England, 12 March 1784; d. Islip, England, 14 August 1856), geology, paleontology.
  NOTES
  BIBLIOGRAPHY

BUFFON, GEORGES-LOUIS LECLERC, COMTE DE (b. Montbard, France, 7 September 1707; d. Paris, France, 16 April 1788); natural history.
  BIBLIOGRAPHY

BURNET, THOMAS (b. Croft, Yorkshire, England, ca. 1635; d. London, England, 27 September 1715), cosmogony, geology.
  BIBLIOGRAPHY

CARDANO, GIROLAMO (b. Pavia, Italy, 24 September 1501; d. Rome, Italy, 21 September 1576), medicine, mathematics, physics, philosophy.
  BIBLIOGRAPHY

CHAMBERS, ROBERT (b. Peebles, Scotland, 10 July 1802; d. St. Andrews, Scotland, 17 March 1871), biology, geology.
  BIBLIOGRAPHY

COMMANDINO, FEDERICO (b. Urbino, Italy, 1509; d. Urbino, 3 September 1575), mathematics.
  BIBLIOGRAPHY

CONYBEARE, WILLIAM DANIEL (b. London, England, June 1787; d. Llandaff, Wales, 12 August 1857), geology.
  BIBLIOGRAPHY

CUVIER, GEORGES (b. Montbéliard, Württemberg, 23 August 1769; d. Paris, France, 13 May 1832), zoology, paleontology, history of science.
  BIBLIOGRAPHY

DESCARTES, RENÉ DU PERRON (b. La Haye, Touraine, France, 31 March 1596; d. Stockholm, Sweden, 11 February 1650), natural philosophy, scientific method, mathematics, optics, mechanics, physiology.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Mathematics and Physics.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Physiology.
  BIBLIOGRAPHY

GALILEI, GALILEO (b. Pisa, Italy, 15 February 1564; d. Arcetri, Italy, 8 January 1642), physics, astronomy.
  Early Years.
  Professorship at Pisa.
  Professorship at Padua.
  Early Work on Free Fall.
  The Telescope.
  Controversies at Florence.
  Dialogue on the World Systems.
  The Trial of Galileo.
  Two New Sciences.
  Last Years.
  Sources of Galileo's Physics.
  Experiment and Mathematics.
  The Influence of Galileo.
  Personal Traits.
  BIBLIOGRAPHY

GASSENDI (GASSEND), PIERRE (b. Champtercier, France, 22 January 1592; d. Paris, France, 24 October 1655), philosophy, astronomy, scholarship.
  NOTES
  BIBLIOGRAPHY

GESNER, KONRAD (b. Zurich, Switzerland, 26 March 1516; d. Zurich, 13 March 1565), natural sciences, medicine, philology.
  BIBLIOGRAPHY

GOMPERTZ, BENJAMIN (b. London, England, 5 March 1779; d. London, 14 July 1865), mathematics.
  BIBLIOGRAPHY

GOODRICH, EDWIN STEPHEN (b. Weston-super-Mare, England, 21 June 1868; d. Oxford, England, 6 January 1946), comparative anatomy, embryology, paleontology, evolution.
  BIBLIOGRAPHY

GOULD, JOHN (b. Lyme Regis, England, 14 September 1804; d. London, England, 3 February 1881), ornithology.
  BIBLIOGRAPHY

HITCHCOCK, EDWARD (b. Deerfield, Massachusetts, 24 May 1793; d. Amherst, Massachusetts, 27 February 1864), geology.
  BIBLIOGRAPHY

HARRIS, JOHN (b. Shropshire [?], England, ca. 1666; d. Norton Court, Kent, England, 7 September 1719), natural philosophy, dissemination of knowledge.
  BIBLIOGRAPHY

HOBBES, THOMAS (b. Malmesbury, England, 5 April 1588; d. Hardwick, Derbyshire, England, 4 December 1679), political philosophy, moral philosophy, geometry, optics.
  NOTES
  BIBLIOGRAPHY

HOOKE, ROBERT (b. Freshwater, Isle of Wight, England, 18 July 1635; d. London, England, 3 March 1702), physics.
  BIBLIOGRAPHY

HUTTON, JAMES (b. Edinburgh, Scotland, 3 June 1726; d. Edinburgh, 26 March 1797), geology, agriculture, physical sciences, philosophy.
  Geology.
  The Theory of the Earth.
  Reception of the Theory.
  Agriculture and Evolution.
  Physical Sciences.
  Philosophy.
  NOTES
  BIBLIOGRAPHY

JORDANUS DE NEMORE (fl. ca. 1220), mechanics, mathematics.
  NOTES
  BIBLIOGRAPHY

KEILL, JOHN
  BIBLIOGRAPHY

LAMARCK, JEAN BAPTISTE PIERRE ANTOINE DE MONET DE (b. Bazentin-le-Petit, Picardy, France, 1 August 1744; d. Paris, France, 28 December 1829), botany, invertebrate zoology and paleontology, evolution.
  Botany.
  Institutional Affiliations.
  Chemistry.
  Meteorology.
  Invertebrate Zoology and Paleontology.
  Geology.
  Theory of Evolution.
  Origins of Lamarck's Theory.
  Lamarck's Reputation.
  BIBLIOGRAPHY

LEA, ISAAC (b. Wilmington, Delaware, 4 March 1792; d. Philadelphia, Pennsylvania, 8 December 1886), malacology.
  BIBLIOGRAPHY

LEIBNIZ, GOTTFRIED WILHELM (b. Leipzig, Germany, 1 July 1646; d. Hannover, Germany, 14 November 1716), mathematics, philosophy, metaphysics.
  LEIBNIZ: Physics, Logic, Metaphysics
  NOTES
  LEIBNIZ: Mathematics
  BIBLIOGRAPHY

LISTER, MARTIN (christened Radclive, Buckinghamshire, England, 11 April 1639; d. Epsom, England, 2 February 1712), zoology, geology.
  BIBLIOGRAPHY

LYELL, CHARLES (b. Kinnordy, Kirriemuir, Angus, Scotland, 14 November 1797; d. London, England, 22 February 1875), geology, evolutionary biology.
  NOTES
  BIBLIOGRAPHY

MANTELL, GIDEON ALGERNON (b. Lewes, Sussex, England, 3 February 1790; d. London, England, 10 November 1852), geology.
  BIBLIOGRAPHY

MILLER, HUGH (b. Cromarty, Scotland, 10 October 1802; d. Portobello, Scotland, 24 December 1856), geology.
  BIBLIOGRAPHY

MONTE, GUIDOBALDO, MARCHESE DEL (b. Pesaro, Italy, 11 January 1545; d. Montebaroccio, 6 January 1607), mechanics, mathematics, astronomy.
  BIBLIOGRAPHY

MURCHISON, RODERICK IMPEY (b. Tarradale, Ross and Cromarty, Scotland, 19 February 1792; d. London, England, 22 October 1871), geology.
  BIBLIOGRAPHY

NEWTON, ISAAC (b. Woolsthorpe, England, 25 December 1642; d. London, England, 20 March 1727), mathematics, dynamics, celestial mechanics, astronomy, optics, natural philosophy.
   Lucasian Professor. On 1 October 1667, some two years after his graduation, Newton was elected minor fellow of Trinity, and on 16 March 1668 he was admitted major fellow. He was created M.A. on 7 July 1668 and on 29 October 1669, at the age of twenty-six, he was appointed Lucasian professor. He succeeded Isaac Barrow, first incumbent of the chair, and it is generally believed that Barrow resigned his professorship so that Newton might have it.10
   Mathematics. Any summary of Newton's contributions to mathematics must take account not only of his fundamental work in the calculus and other aspects of analysis--including infinite series (and most notably the general binomial expansion)--but also his activity in algebra and number theory, classical and analytic geometry, finite differences, the classification of curves, methods of computation and approximation, and even probability.
  Optics.
  Dynamics, Astronomy, and the Birth of the “Principia.”
  Mathematics in the “Principia.”
  The “Principia”: General Plan.
  The “Principia”: Definitions and Axioms.
  Book I of the “Principia.”
  Book II of the “Principia.”
  Book III, “The System of the World.”
  Revision of the “Opticks” (the Later Queries); Chemistry and Theory of Matter.
  Alchemy, Prophecy, and Theology. Chronology and History.
  The London Years: the Mint, the Royal Society, Quarrels with Flamsteed and with Leibniz.
  Newton's Philosophy: The Rules of Philosophizing, the General Scholium, the Queries of the “Opticks.”
  NOTES
  BIBLIOGRAPHY

OWEN, RICHARD (b. Lancaster, England, 20 July 1804; d. Richmond Park, London, England, 18 December 1892), comparative anatomy, vertebrate paleontology, geology.
  BIBLIOGRAPHY

PACIOLI, LUCA (b. Sansepolcro, Italy, ca. 1445; d. Sansepolcro, 1517), mathematics, bookkeeping.
  NOTES
  BIBLIOGRAPHY

PLAYFAIR, JOHN (b. Benvie, near Dundee, Scotland, 10 March 1748; d. Edinburgh, Scotland, 20 July 1819), mathematics, physics, geology.
  BIBLIOGRAPHY

PLAYFAIR, LYON (b. Chunar, India, 21 May 1818; d. London, England, 29 May 1898), chemistry.
  BIBLIOGRAPHY

PLOT, ROBERT (b. Borden, Kent, England, 13 December 1640; d. Borden, 30 April 1696), natural history, archaeology, chemistry.
  BIBLIOGRAPHY

SCHEUCHZER, JOHANN JAKOB (b. Zurich, Switzerland, 2 August 1672; d. Zurich, 23 June 1733), medicine, natural history, mathematics, geology, geophysics.
  BIBLIOGRAPHY

SCHOTT, GASPAR (b. Königshofen, near Würzburg, Germany, 5 February 1608; d. Würzburg, 22 May 1666), mathematics, physics, technology.
  BIBLIOGRAPHY

SCROPE, GEORGE JULIUS POULETT (b. London, England, 10 March 1797; d. Fairlawn [near Cobham], Surrey, England, 19 January 1876), geology.
  NOTES
  BIBLIOGRAPHY

SEDGWICK, ADAM (b. Dent, Yorkshire, England, 22 March 1785; d. Cambridge, England, 27 January 1873), geology.
  BIBLIOGRAPHY

SMITH, WILLIAM (b. Churchill, Oxfordshire, England, 23 March 1769; d. Northampton, England, 28 August 1839), geology.
  BIBLIOGRAPHY

STENSEN, NIELS, also known as Nicolaus Steno (b. Copenhagen, Denmark, 1%6111 January 1638; d. Schwerin, Germany, 25 November/5 December 1686), anatomy, geology, mineralogy.
  BIBLIOGRAPHY

STERNBERG, KASPAR MARIA VON (b. Prague, Bohemia [now in Czechoslovakia], 6 January 1761; d. Březina castle, Radnice, 20 December 1838), botany, geology, paleontology.
  BIBLIOGRAPHY

WOODWARD, JOHN (b. Derbyshire, England, 1 May 1665; d. London, England, 25 April 1728), geology, mineralogy, botany.
  BIBLIOGRAPHY


Electronic edition published by Cultural Heritage Langauge Technologies (with permission from Charles Scribners and Sons) and funded by the National Science Foundation International Digital Libraries Program. This text has been proofread to a low degree of accuracy. It was converted to electronic form using data entry.

LAMARCK, JEAN BAPTISTE PIERRE ANTOINE DE MONET DE (b. Bazentin-le-Petit, Picardy, France, 1 August 1744; d. Paris, France, 28 December 1829), botany, invertebrate zoology and paleontology, evolution.

    the four-element theory (earth, air, water, and fire) was generally accepted in France. He continued to believe in the four elements throughout his life despite the work of Lavoisier and the chemical revolution; for this reason his chemistry has often been dismissed as worthless speculation. Yet Lamarck took it very seriously, and it was an important part of his ideas about nature and evolution.

Lamarck's first work in the field, Recherches sur les causes des principaux faits physiques, was begun in 1776. It was submitted to the Académie des Sciences in 1780 and received an unfavorable report; it was finally published in 1794, after the Academy had been suppressed. Lamarck devoted two other full-length studies to chemistry: Réfutation de la théorie pneumatique (1796) and Mémoires de physique et d'histoire naturelle (1797). He also published two articles in 1799; they were reprinted at the end of his Hydrogéologie (1802), which contained a long chapter relating his chemical theories to his geological theories. Although Lamarck's chemical views were ignored, he continued to hold them; they appear with signs of increasing paranoia in his major evolutionary works. They play the most prominent role in Recherches sur l'organisation des corps vivans (1802), the first full-length exposition of his evolutionary theories.

In Lamarck's four-element theory, differences between compounds depended on both the number and proportion of the elements and the relative strengths of the bonds between the elements in the constituent molecules. Furthermore, each element had a natural state in which it demonstrated its real properties and several modified states in which it was present in compounds. The most important of the four elements in Lamarck's chemistry was fire, which existed in three main states: a natural one and two modified forms, which were fire in a state of expansion (or caloric fire) and fixed fire. Using these three main states and their many internal modifications, Lamarck attempted to account for a great number of chemical and physical phenomena such as sound, electricity, magnetism, color, vaporization, liquefaction, and calcination. Later, in his theory of evolution, he added life as another phenomenon to be explained by activity of fire. For Lamarck, fire not only explained many processes, it also was a constituent principle of compounds. He attempted to show how chemical substances in their various states depended on differing amounts of fixed fire. One temporary form of fixed fire was phlogiston.

Lamarck believed that only living beings could produce chemical compounds. Plants combined free elements directly to produce a number of substances of varying complexity. These in turn were elaborated by the different animals eating the plants, the more complex substances being produced by those animals with the most highly organized physiological structure. The process of compound formation involved modification of the elements away from their natural state and the more complex the substance, the greater the modification. Once the forces of life were removed, by death or the elimination of waste products, the compounds began to disintegrate. The natural tendency of all compounds, therefore, was to decompose until the elements returned to their natural state, in the process producing all known inorganic substances. For the mineral kingdom there was a chain of being with continous degradation from the most complex to the simplest; this chain was composed of individuals rather than species or types of minerals. Lamarck's first statement of his theory of evolution in 1800 showed a similar thought pattern: degradation and irrelevance of species.

In his chemistry, Lamarck showed a speculative orientation and an emphasis on nature as a whole with many interrelated parts and processes. His distinction between the living and the nonliving was crucial to his biology and his view of the mineralogical chain of being was basic to his geology. His chemistry was also later to be very important in his theory of evolution. It was used to provide a materialistic definition of life and to explain its maintenance, appearance (both through reproduction and through spontaneous generation), and the way in which living organisms gradually evolve, including the emergence of the higher mental faculties. Fire, as understood by Lamarck, was the key element in all of these explanations.


Meteorology.

Lamarck's work in meteorology was similar in many respects to that in chemistry. Although one of his earliest scientific interests, he did not publish anything until the late 1790's; he experienced the same general lack of reception of his work in chemistry. Meteorology was the first scientific area in which Lamarck prepared a memoir and one which was well received by the Academy. The manuscript of this unpublished memoir (Muséum National d'Histoire Naturelle, Paris, MS 755-1) shows that as early as 1776, Lamarck was interested in the effects of climate on living organisms. It is highly probable that Lamarck's interest in chemistry resulted from his concern with certain aspects of meteorology. His general approach to science is also evident in this early manuscript: his emphasis is on the general principles, and he manifests disdain toward those devoted solely to the collection of little facts. The extent to which Lamarck saw his meteorology as part of his whole view of nature is indicated later in his

 Image Size: 240x320 480x640 
960x1280 1440x1920 1920x2560